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Abstract. The coupling constant of φ → KK decay is calculated by light cone QCD sum rules. The result
obtained for gφKK = (4.9 ± 0.8) is in good agreement with the existing experimental results.

1 Introduction

Light scalar mesons constitute a remarkable exception of
the quark model systematization of the mesons, and their
nature still needs to be unambiguously established [1].

Particularly, the nature of the f0(980) meson is un-
der debate. According to the naive q̄q picture and strong
coupling with the kaons, f0(980) can be interpreted as
a pure s̄s state [2–4]. However, this interpretation does
not explain the mass degeneracy between f0(980) and the
isovector a0(980), which is interpreted as a (ūu − d̄d)/

√
2

state. It is also interpreted as a four quark q̄qs̄s [5] bound
state of hadrons [6–8] and as a result of a process known
as hadronic dressing [2, 9].

For understanding the content of the f0 meson several
alternatives have been suggested: For example, analysis
of φ → f0γ decay [5–10] and investigation of the ratio
Γ (a0 → f0γ)/Γ (φ → f0γ) [7, 8] are believed to be the
most promising ones for this purpose.

The φ → f0γ decay is a very efficient tool for this
purpose, since the branching ratio is essentially dependent
on the content of f0. For example, if f0 is a pure s̄s state,
the branching ratio is ∼ 10−5, while if f0 is composed
of four quarks then the branching ratio is expected to be
∼ 10−4.

The strong coupling constants gφK+K− and gf0K+K−

are among the important hadronic parameters entering
the analysis involving φ and f0(980). Indeed, the kaon loop
diagrams contributing φ → f0γ are expected to be in terms
of gf0K+K− as well as gφK+K− . The coupling constant
gf0K+K− is studied in light cone QCD sum rules [10] (more
about light cone QCD sum rules and their applications can
be found in [11,12]).

In the present work we calculate the strong coupling
constant gφK+K− by the light cone QCD sum rules method.
It should be noted that this constant can be obtained from
the experimental data on φ meson decays. The goal of the
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present work is twofold. Firstly, we can ask: can we get
new information about the quark content of the φ meson
comparing experimental data with theoretical results? Sec-
ondly, how does light cone QCD work for the asymmetric
case, i.e., with different Borel mass parameters correspond-
ing to different mass channels?

This paper is organized as follows. In Sect. 2, we derive
sum rules for the gφK+K− coupling constant. In Sect. 3,
we present our numerical results and conclusion.

2 Sum rules for the gφK+K− coupling constant

In this section we calculate the strong coupling constant
gφK+K− by light cone QCD sum rules. This coupling con-
stant is defined by the following matrix element:

〈K−(q)φ(p, ε)|K+(p + q)〉 , (1)

where the momentum assignment is specified in brackets
and εµ is the polarization vector of the φ meson. In order to
calculate the strong coupling constant gφK+K− we consider
the following correlator function:

Πµν(p, q) = i
∫

d4xeipx
〈
K(q)

∣∣T {
Jφ

ν (x)J̄K
µ (0)

}∣∣ 0
〉

,(2)

where the quark current JK
µ = ūγµγ5s is the axial vector

current and Jφ
ν = s̄γµs is the interpolating current for the

φ meson.
The correlator function, in general, can be written in

terms of the following five independent invariant functions:

Πµν(p, q) (3)

= Π1gµν + Π2pµpν + Π3pµqν + Π4qµpν + Π5qµqν .

Therefore, our first problem is to choose the kinematical
structure. For this aim, we consider the phenomenological
part of the correlator function. This part can be written
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as

Πµν = (4)

∑ 〈K−(q)φ(p)|K+(p + q)〉〈K+(p + q)|JK
µ |0〉〈0|Jφ

ν |φ(p)〉
(p2 − m2

φ)[(p + q)2 − m2
K ]

.

The matrix elements entering (4) are defined by

〈K+(p + q)|JK
µ |0〉 = fK(p + q)µ ,

〈0|Jφ
ν |φ(p)〉 = mφfφεν . (5)

Using (4) and (5), we get for the physical part

Πµν = (6)

gφK+K−fKmφfφ

(p2 − m2
φ)[(p + q)2 − m2

K ]
(pµ + qµ)

(
qν +

1
2
pν

)
.

It follows from this expression that the only the struc-
tures pµqν , qµqν , qµpν and pµpν give a contribution to the
correlator function. In our further analysis, we will choose
the structure pµqν from which the corresponding invariant
structure,

Π =
gφK+K−fKmφfφ

(p2 − m2
φ)[(p + q)2 − m2

K ]
, (7)

follows.
Our next task is the calculation of the correlator func-

tion from the QCD side. This calculation can be carried
out by using the light cone operator product expansion
method, in which we work with large momenta, i.e., −p2

and −(p+q)2 are both large. The correlator function, then,
can be calculated as an expansion near to the light cone
x2 � 0. The expansion involves matrix elements of the
non-local operators between vacuum and the kaon states,
i.e., in terms of kaon wave functions with increasing twist.

After lengthy calculations, we get the following expres-
sion for the invariant function which is proportional to the
structure pµqν :

Π(p2, (p + q)2)

= ifK

∫ 1

0
du

{
4ug2(u)

∆2 +
ϕK(u)

∆

− 4
g1(u) + G2(u)

∆2

(
1 +

2m2
s

∆

)

+
m2

K

3
ϕσ(u)
∆2

}

+ ifK

∫ 1

0
du u

∫
Dαi

2
∆2

2
[2ϕ⊥(αi) + ϕ‖ + 2ϕ̃⊥(αi)]

+ ifK

∫ 1

0
du

∫ 1

0
dα3

∫ 1−α3

0
dα1

× 1
∆2

2
[2ϕ⊥(αi) − ϕ‖ + 2ϕ̃⊥(αi) − ϕ̃‖(αi)]

+ 2ifK

{∫ 1

0
du(u − 1)

∫ 1

0
dα3

×4F̂ (α3){pq + m2
K [1 + α3(u − 1)]}
∆3

1

+
∫ 1

0
du

∫ 1

0
dα3

∫ 1−α3

0
dα1

× 4F (αi)[pq + m2
K(α1 + uα3)]

∆3
2

}
, (8)

where

∆ = m2
s − (p + qu)2 ,

∆1 = m2
s − [p + q(1 + (u − 1)α3]2 ,

∆2 = m2
s − [p + q(α1 + uα3)]2 , (9)

and

F̂ (α3) = −
∫ α3

0
dt

∫ 1−t

0
dα1Φ(α1, 1 − α1 − t, t) , (10)

F (αi) = −
∫ α1

0
dtΦ(t, 1 − α3 − t, α3) , (11)

Φ(αi) = ϕ‖(αi) + ϕ⊥(αi) + ϕ̃‖(αi) + ϕ̃⊥(αi) .

(12)

The functions in (8) are defined by

〈K(q)|ū(x)γµγ5s(0)|0〉

= −ifKqµ

∫ 1

0
dueiuqx[ϕK(u) + x2g1(u)]

+ fK

(
xµ − qµx2

qx

) ∫ 1

0
dueiuqxg2(u) , (13)

〈K(q)|ū(x)σµνγ5s(0)|0〉

= i(qµxν − qνxµ)
fKm2

K

6ms

∫ 1

0
dueiuqxϕσ(u) , (14)

and

G(u) = −
∫ u

0
g2(u)dv . (15)

The matrix elements involving the quark–gluon field
are determined by

〈K(q)|ū(x)γµγ5gsGαβ(ux)s(0)|0〉

= fK

[
qβ

(
gαµ − xαqµ

qx

)
− qα

(
gβµ − xβqµ

qx

)]

×
∫

Dαiϕ⊥(αi)eiqx(α1+uα3) (16)

+ fK
qµ

qx
(qαxβ − qβxα)

∫
Dαiϕ‖(αi)eiqx(α1+uα3)



T.M. Aliev et al.: φ → KK decay in light cone QCD 199

〈K(q)|ū(x)γµgsG̃αβ(ux)s(0)|0〉

= ifK

[
qβ

(
gαµ − xαqµ

qx

)
− qα

(
gβµ − xβqµ

qx

)]

×
∫

Dαiϕ̃⊥(αi)eiqx(α1+uα3) (17)

+ ifK
qµ

qx
(qαxβ − qβxα)

∫
Dαiϕ̃‖(αi)eiqx(α1+uα3) ,

where G̃αβ = 1
2εαβρσGρσ, Dαi = dα1dα2dα3δ(1 − α1 −

α2 − α3).
The sum rule for gφK+K− is obtained by equating the

phenomenological and the theoretical parts, (7) and (8).
In order to suppress the contributions of the continuum

and higher states, we perform a double Borel transforma-
tion over the variables −p2 and −(p + q)2 on both sides
of (7) and (8), and obtain the following expression for the
correlator function:

fKmφfφgφKKe−m2
φ/M2

1 e−m2
K/M2

2

= fKe−m2
0/M2

{
M2ϕK(u0) + 4u0g2(u0)

− 4[g1(u0) + G2(u0)] +
m2

K

3
ϕσ(u0)

− 4
m2

s

M2 [g1(u0) + G2(u0)]

+
(∫ 1−u0

0
dα3

∫ u0

u0−α3

dα1

+
∫ 1

1−u0

dα3

∫ 1−α3

u0−α3

dα1 −
∫ 1

u0

dα3

∫ 0

u0−α3

dα1

)

×
(

2
u0 − α1

α3

2ϕ⊥(αi) + ϕ‖(αi) + 2ϕ̃⊥(αi)
α3

+
Φ(αi)
α3

− 2
α3

dF (αi)
dα1

)
(18)

− 2
∫ 1

1−u0

F̂ ′(α3)
α3

dα3 − 2
∫ 1

1−u0

dα3
F (1 − α3, 0, α3)

α3

}
,

where M2 = M2
1 M2

2
M2

1+M2
2
, u0 = M2

1
M2

1+M2
2

and m2
0 = m2

s +
m2

Ku0(1 − u0). Subtraction of the continuum and higher
states is carried out by employing the quark–hadron dual-
ity, i.e., the continuum contribution, which is represented
in terms of the spectral density obtained from the QCD
side, by equating it to the one obtained from the QCD side,
but starting from some given threshold. The prescription
for subtraction of the contribution of the continuum in the
light cone version of the sum rule is proposed in [13] (see
also [14]). In [13] and in many other works, the symmetric
point M2

1 = M2
2 = 2M2 (i.e., u0 = 1/2) is considered, and

then the continuum subtraction is implemented by means
of the simple substitution

e−m2/M2 → e−m2/M2 − e−s0/M2

in the leading twist term (in our case the leading twist
term is the wave function ϕK(u)). But this prescription is
not adequate in our case, where the Borel parameters and
masses of different channels are not equal. In the present
work we will follow the analysis given in [10], where the
prescription for the continuum subtraction through use
of the Borel parameters with different masses in the re-
spective channels is proposed, and properties of the wave
functions are exploited. Namely, the leading twist-2 wave
function can be exploited as a power series:

ϕK(u) =
∑

k

bk(1 − u)k ,

in order to calculate its contribution in the duality re-
gion. Here we will neglect the continuum subtraction in
the higher twist terms altogether, due to their small con-
tribution to the theoretical part of the sum rules. Also, we
will neglect the continuum subtraction in all higher twist
terms, due to their small contribution to the theoretical
part of the sum rules.

The final result for the gφKK coupling is given by

gφKK =
1

mφfφ
em2

φ/M2
1 em2

K/M2
2 e−m2

0/M2

×
{

M2
∑

k

bk

(
M2

M2
1

)k

×
[
1 − e−(s0−m2

s)/M2
k∑

i=0

1
i!

(
s0 − m2

s

M2

)i

+ e−(s0−m2
s)/M2 m2

KM2

M2
1 M2

2

1
(k + 1)!

(
s0 − m2

s

M2

)k+1
]

+ 4u0g2(u0) − 4[g1(u0) + G2(u0)]

+
m2

K

3
ϕσ(u0) − 4

m2
s

M2 [g1(u0) + G2(u0)]

+
(∫ 1−u0

0
dα3

∫ u0

0
dα1 +

∫ 1

1−u0

dα3

∫ 1−α3

u0−α3

dα1

−
∫ 1

u0

dα3

∫ 0

u0−α3

dα1

)

×
[
2
u0 − α1

α2
3

(2ϕ⊥(αi) + ϕ‖(αi) + 2ϕ̃⊥(αi))

+
Φ(αi)
α3

− 2
α3

dF (αi)
dα1

]

− 2
∫ 1

1−u0

dα3
F̂ ′(α3)

α3
− 2

∫ 1

1−u0

dα3
F (1 − α3, 0, α3)

α3

}
,

where s0 is the smallest continuum contribution.
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3 Numerical analysis

In this section we present our numerical calculation of the
gφKK coupling constant. It follows from (19) that the main
input parameters are the kaon wave functions. The theo-
retical framework for their determination is based on an
expansion in terms of the matrix elements of the conformal
operators [15]. In particular, for the leading twist-2 wave
function ϕK(u) defined in (13), the expansion goes over
into Gegenbauer polynomials:

ϕK(u, µ2) = 6u(1 − u) (19)

×
[
1 +

∞∑
n=1

a2n(µ2)C3/2
2n (2u − 1)

]
,

where a2(1 GeV) = 0.2 [16].
Analogously ϕσ is defined as

ϕσ(u) = 6u(1 − u)

×
[
1 +

(
5η3 − 1

2
η3w3 − 7

20
ρ2 − 3

5
ρ2ã2

)
C

3/2
2 (2u − 1)

+ · · ·
]

, (20)

where at the µ = 1 GeV scale η3 = 0.015, w3 = −3, and
ã2 = 0.2. Here, the factor ρ = m2

s/m2
K takes into account

the boson mass corrections [17]. The twist-4 wave functions
ϕ‖(αi), ϕ⊥(αi), ϕ̃‖(αi) and ϕ̃⊥(αi), including the meson
mass corrections are given as [15,17]

ϕ⊥(αi) = 30m2
Kα2

3(2α1 − 1 − α3)

×
[
h00 + h01α3 +

h10

2
(5α3 − 3) + · · ·

]

ϕ⊥(αi) = 120m2
Kα1(1 − α1 − α3)

× α3[a10(1 − 2α1 − α3) + · · · ] ,

ϕ̃⊥(αi) = −30m2
Kα2

3

×
{

h00(1 − α3) + h01[α3(1 − α3) + 6α1(1 − α1 − α3)

+ h10[α3(1 − α3) − 3
2
[α2

1 + (1 − α1 − α3)2] + · · ·
}

,

ϕ̃⊥(αi) = 120m2
Kα1(1 − α1 − α3)

× α3[v00 + v10(3α3 − 1) + · · · ] ,

where

h00 = v00 = −1
3
η4 ,

h01 =
7
4
η4w4 − 3

20
a2 ,

h10 =
7
2
η4w4 +

3
20

a2 ,

Fig. 1. The dependence of the coupling constant gφKK on the
Borel parameters M2

1 and M2
2 , at the fixed value s0 = 1.1 GeV2

of the continuum threshold

Fig. 2. The same as Fig. 1, but at the fixed value s0 =
1.2 GeV2 of the continuum threshold

v10 =
21
8

η4w4 ,

a10 =
21
8

η4w4 − 9
20

a2 ,

with η4(µ = 1 GeV) = 0.6 and w4(µ = 1 GeV) = 0.2
[15,17].

The values of the other input parameters appearing
in (19) are ms = 0.14 GeV [18], mK = 0.4937 GeV and
mφ = 1.02 GeV. The leptonic decay constant of the φ
meson, fφ = 0.234 GeV, follows from the experimental
result of the φ → �+�− decay [19]. The threshold s0 which
is varied around the value s0 = 1.1 GeV2, is determined
from the analysis of two-point function sum rules for fK

[20].
Having all input parameters, we now proceed by carry-

ing out a numerical calculation. The dependence of gφKK

on the Borel masses M2
1 and M2

2 at two fixed values of s0 =
1.1 GeV2 and s0 = 1.2 GeV2 is presented in Figs. 1 and
2, respectively. According to the QCD sum rule method,
ranges of the auxiliary Borel parameters M2

i should be
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found such that the result for gφKK be practically inde-
pendent of them.

From these figures we see that such regions indeed do
exist. When M2

1 and M2
2 are varied in the regions 2 GeV2 ≤

M2
1 ≤ 4 GeV2 and 0.8 GeV2 ≤ M2

2 ≤ 1.4 GeV2, the result
for gφKK seems to be independent of the Borel parameters.
It should be noted here that the result changes slightly
when the continuum threshold is fixed at the value s0 =
1.2 GeV2. The final result for gφKK is

gφKK = 4.9 ± 0.8 . (21)

At this point, let us discuss the sources of the uncer-
tainties. The SUf (3) breaking effects in kaon distribution
amplitudes which we neglected can play an essential role,
since we can explore a wide range of u and hence smoothen
the effects of the shape of the wave function. An additional
uncertainty arises from the value of ms. All these factors
can cause an uncertainty of about 5–10%. Moreover, the
errors coming from the variations in the continuum thresh-
old and Borel masses change the result by about 10%. If
all these uncertainties are taken into account, the resulting
error is about 20%, which is quoted in (21).

Finally, we would comment that existing experimen-
tal results on φ → KK decay predict gφKK = 4.8. So,
obviously, we see that our result is quite close to the ex-
perimental value. Therefore we conclude that the quark
content of φ is s̄s, and for channels with different masses
and different Borel parameters, the light cone QCD sum
rules work quite well.
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